
greater than steel beads, moved at somewhat greater mean velocities (Fig. 4). It was diffi- 
cult to establish quantitative agreement between the theory and the experiment, since we did 
not determine the angle 0 for a specific experimental scheme (see the scheme in Fig. 4). 
However, if we compare Eq. (14) and the test data for the steel beads, then for a certain 
mean angle we obtain the value 0 ~ 0.4 (23~ this corresponds fully to the actual situation. 

In conclusion, we should note that the results obtained depend little on the form of the 
particle. Points 5 in Fig. 4 correspond to steel cubes with an equivalent diameter d ~ 3.5 
mm. The moderate difference in the proportionally factor from the case of steel beads 
(spheres) is possibly connected with the somewhat different values of the resistance and 
restitution coefficients for the cubes. The geometry of the chamber is evidently the de- 
termining factor for the characteristics of particle motion, other conditions being equal as 
determined by the above-developed theory. 

NOTATION 

R, h, radius and height of turbulence chamber; 8, angle of rotation of plane of rib 
relative to a tangent to an inscribed cylinder; V, p, velocity of gas and its density; d, 
Pz, w, a, diameter of particle, its density, linear velocity, and angular velocity relative 
to the center of mass; u, relative velocity of particle and gas; z = x + iy, complex coordi- 
nate of particle; t, T, time; T, period of time between impacts; n, restitution coefficient; 
E, coefficient of resistance of particle; kl, numerical coefficient in the Magnus force; ~, 
B, dimensionless criteria. 
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CONVECTIVE HEAT EXCHANGE IN TURBULENT FLOW OF A GAS SUSPENSION 

WITHIN A CYLINDRICAL CHANNEL 

F. N. Lisin and I. F. Guletskaya UDC 536.244:532.529.5 

A convective heat-exchange model is presented for flow of a gaseous suspension in 
a tube, which considers the increase in heat capacity of the system and the effect 
of particles on the turbulent structure of the flow. Comparison of calculated re- 
sults with experiment shows good agreement. 

The intensity and efficiency of many heat-exchange processes in metallurgy, energy gen- 
eration, and other branches of industry are determined by phenomena occurring in gas--solid 
particle type dispersed systems. Heat exchange was treated in [I] with consideration of the 
effect of particles on the turbulent structure of the carrier flow within the framework of 
Buevich's model [2], which consists of breakoff of the shortwave portion of the turbulent 
energy spectrum. The calculation results of [I] agree well with experiment in the low par- 
ticle concentration range M ~ 6. It is of interest to consider the case of higher particle 
concentrations. 

We will write the energy equation for the turbulent flow of a gas suspension in a tube 
just as in [I], but without consideration of radiation 
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( 1 - - 6 ) c p u .  OT + 6clplu I OTj 1 0 { _ _  } 
ax ~ = 7 a~- (1 - -  6) r (~ + s aT r6c,p~ < vlT ;. > , ( ; ) 

Or 

where <v~T~> is a quantity characterizing turbulent energy transfer by particles. 

The last term of Eq. (I) can be interpreted as the turbulent heat flux transferred by 
I! 

particles Bclpl<viTl> = BelPla~(3Tl/3r), where a~ is the turbulent heat diffusion coeffi- 
cient, related to particle displacement. 

To describe heat exchange in the two-phase flow Eq. (I) must be complemented by an energy 
equation for the particles. In the present study we will assume for simplicity that the tem- 
peratures of gas and particles coincide (which is valid for particles small in size). Then in 
in dimensionless form energy equation (I) takes on the form 

u---U--(1 q - z ) 0 0 _ _ _ 4  1 O { r [ _ ~ r  q_ 1 __.v t if_ z 1 vp ] 0_~7}. (2) 
Urn Ox Re r 07 Prt v q~ Pr't v 

Here we introduce the notation Pr t = vt/~t; Pr~ = Vp/~; Re = umD/V; z - 6 91 ul Q ; 
_ 1 - - 6  p u c 

cp = ua/u; x= x/D; r = r/R; O = T/T o . The boundary conditions for Eq. (2) are as follows: 

x = O  o(o, T)=  1; 

7 = 1 0(~, 1) = Ow; 

r = 0 - - 0 0  = O. 
OF 

According to [3], the velocity profile of the carrier medium can be written in the form 

u/v* 2 , 3  l gy++5 .8 ;  3 0 G y + ~ 3 5 0 ;  
Xo 

u/v* = y+; y+ ~ 30, 

where y is the distance from the wall; y+ = v*y/v. 

To describe the velocity in the flow core we take the profile of [I] 

Uo--U 1 [In (I--~/ 1 Y ) r 1 Y ] y+ 
v* • ~ / 1  + ~lln R -- R ; > 350 ,  

where u0 is the velocity on the tube axis, and ~ is a coefficient defined by data from [3]. 

As before, for the turbulent viscosity profile of the carrier medium we take the model 
of [2]. For the viscous and transition layers we have 

- -  - -  Xo (1 r )  2 1 - -  e x p  r - -  r o 2 
- - 2 -  - -  oh Or ' 

where r = r/R; u = U/Um, ~I = ~v/Rv*. 
the expression 

From the data of [2] ~ = 30.4, r0 is calculated with 

r o = 1 - - -  al~dl/D, 

(3) 

(4) 

where ~ is a proportionality coefficient. 

We write the turbulent diffusion coefficient for the solid particles in the form of a 
ratio [4] 

% ~t' ( 5 )  
\ V 1  / 

which is valid for cases in which the particle relaxation time is greater than the external 
time scale of the turbulence. 

The problem of Eq. (2) with boundary conditions (3) was solved numerically on a BESM-6 
computer. Calculations of dynamic gas velocity v* were performed by the method described in 
[3]: as a function of Res, based on the rotational velocity and size of the particles, the 
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Fig. 1. Dependence of heat 
liberation on particle con- 
centration: I) experiment 
[5]; 2) calculation. 

quantity q was determined, after which the shear stress in the carrying medium was found from 
the expression T t = (1 + q~)r0, where To is determined from the Blasius law. 

Figure ] shows the results of a calculation for Re = 32,000, D = 18.8 mm, dl = 100 pm. 
The quantity Nuo characterizes heat liberation from a pure air flow. Also shown is an ex- 
perimental curve from [5]. The results agree well for ~ ~ 6, but differ strongly at higher 
concentrations. This disagreement is apparently due to the fact that aside from suppression 
of high-frequency pulsations of the carrier fluid by particles, with increase in concentra- 
tion there must be some "generation" of turbulence due to formation of wakes as particles are 
flowed over. It was noted in [6] that due to difference in the velocities of fluid and par- 
ticles a system of vortices (shroud) is formed, the presence of fine scale vortices in which 
changes the form of the turbulent energy spectrum in the range of wave numbers comparable to 
]/dl. In order to introduce an additional turbulent viscosity for the carrier medium, genera- 
ted by the system of wakes, we may use the well-known relationships of Kolmogorov [7] and 
Prandtl [8]; 

s = const  ea/2/l~, ( 6 )  

v '  = cons te~/2 l~ .  (7)  

I t  f o l l o w s  f r o m  Eqs .  ( 6 ) ,  (7) t h a t  

~ ' =  constel/al~,  (8) 

i.e., the additional turbulent viscosity is expressed in terms of the energy dissipation to 
particles c, while for the scale length Ik we may take a quantity proportional to the par- 
ticle diameter. 

We will assume approximately that "generation" of turbulent energy in particle wakes is 
equal to the accuracy of a coefficient to the viscosity dissipation. Then the mean energy 
dissipation per unit mass of fluid can be expressed by 

e' = const ~pdl < ( u ' - - v ' )  2 >, (9) 

where u' v' are velocity pulsations of fluid and particles, respectively. We write the dif- 

ference in pulsation velocities in the form of [9] 

< u~ = < ( . '  - -  v T  > = < u '~ > ! ~ f (~) d~; ( 1 o) 

where 

1 - - b  o) ~R---- ; 
b c, 

b 2 l (@~)  2 V-6- b (+)3/2 (+) (_~_)1/2 
f2 2 _ + + 3 -r W--if- + 1; 

b 3p 12% 
2p~ + p d~ ' 

f(~) is a Lagrangian function of the energy spectrum. 

The expression for the total dissipation on all particles will then be 

s =- const ~ - -  P 

m d~ < u " > i - ~ ,  f(+)do~. (11) 
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Fig. 2. Comparison of calculated results for heat libera- 
tion in the stabilized region with various experiments: 1) 
[11]; 2) [12]; 3) [13]; 4) [14]; 5) [15]; 6) [16]; a) cal- 
culation; b) generalization of [5]. 

Substituting this expression in Eq. (8) we obtain 

We will define <u'> with the analytic expression of [I0], which approximates Laufer's ex- 
perimental data well: 

( u' > : Av* (F+)3/2 exp (--0.05F+), F+ ~ 21.52, ( ] 3) 

< u ' >  = g+ 
, y+ > 21,52. (34) 0.53 / 

] y+~ @ 0.85g+ @ 14 

Expressions for calculation of A and R+ are presented in [10]. 

Thus, the additional turbulent viscosity v t appears in Eq. (2) as a term in mr" In cal- 
culating the value of the integral in Eq. (Ik) data from [9] were used for the energy spec- 
trum. The results of solving Eq. (2) with consideration of additional viscosity (12) were 
processed in the form of the dependence of Nu/Nu0 on the complex 

65 D 

ReO. 9 d~ 

Figure 2 shows the calculated dependence of Nu/Nu0 on p. The points indicate experimen- 
tal data of various researchers. These calculated results were obtained at Pr[ : 1; ~ = 2.9 
and with the constant in Eq. (12) equal to 8.348. The dashed line is the empirical expression 
of [5]. The convective heat-exchange model considered herein is simple and gives good agree- 
ment with the experiments of [I]-16]. 

NOTATION 

8, volume concentration of solid phase; X, Xt, molecular and turbulent thermal conductiv- 
ity of carrier medium; c, 0, ci, Pz, specific heat and density of gas and particles; ~, kine- 
matic viscosity; Prt, turbulent Prandtl number; D, channel diameter; To, gas temperature at 
entrance; Um, mean flow velocity; Re = umD/~ , Reynolds number; v*, dynamic viscosity; • , 
Karman constant; M, solid phase concentration by weight (k~/kg); d~, particle diameter; e, tur- 
bulent energy; c, energy dissipation; ~k, turbulence scale; ~, frequency. 

I . 

2. 

3. 

4. 
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WAVE STRUCTURE OF TURBULENT FLOW IN A TUBE 

Ya. A. Vagramenko UDC 532.525.2 

The wave theory of turbulence is applied to determine the fluctuation field u of 
shear flow in a tube. 

The particle-wave representation of turbulence reflects several of its quantum-mechanical 
properties: the fluctuation fields of vortices are manifested as a fluctuation probability 
wave, encompassing the region of the statistically coupled vortex state. The wavelength of 
the probability standing wave determines the largest vortex size occurring in the transverse 
flow scale. A mean (regular) shear flow is realized within the limits of this wave. In the 
shear model the fluctuation field is represented by means of the wave function 4, determining 
the probability wave amplitude -- the fluctuation intensity, as well as their linear scales 
inversely proportional to the wave number. The system of equations and the foundations of 
the method discussed were published earlier in [I, 2]. Several assumptions on the quantum 
analogies of turbulence were discussed in [3]. 

Turbulent flow in a tube at a sufficient distance from its input cross section is real- 
ized without longitudinal variation of the fluctuation field. In this case 

ih O~ h ~ { 0 ~  , 1 0~ ) i =  r (1) 
Ot 29 ~ ~y~ -t- } ,  �9 y Oy 

The b e h a v i o r  of t h e  V-wave ,  d e s c r i b e d  by  Eq. ( 1 ) ,  i s  d i f f e r e n t  n e a r  t h e  w a l l  (y § R) and  n e a r  
the flow axis (y § 0), since the vortex structure is inhomogeneous in these two regions. The 
increase in fluctuation intensity at the wall, along with enhanced tendency toward vortex 
formation, implies existence of an inhomogeneous wave at the walls. The stabilized structure 
of vortices "torn" from the wall is characteristic of the central flow region, in which the 
fluctuation level is also stable. The inhomogeneous wave corresponds to the special repre- 
sentation ~ = aexp (ib), so that for stationary turbulence (3a2/3t = 0) we obtain, according 
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